Date of Award

8-2016

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering (Holcomb Dept. of)

Committee Member

Dr. Elham B. Makram, Committee Chair

Committee Member

Dr. Richard Groff

Committee Member

Dr. Randy Collins

Committee Member

Dr. William Bridges

Committee Member

Dr. Ramtin Hadidi

Abstract

Recent developments in computing, communication and improvements in optimization techniques have piqued interest in improving the current operational practices and in addressing the challenges of future power grids. This dissertation leverages these new developments for improved quasi-static analysis of power systems for applications in power system planning, operation and control.

The premise of much of the work presented in this dissertation centers around development of better mathematical modeling for optimization problems which are then used to solve current and future challenges of power grid. To this end, the models developed in this research work contributes to the area of renewable integration, demand response, power grid resilience and constrained contiguous and non-contiguous partitioning of power networks.

The emphasis of this dissertation is on finding solutions to system operator level problems in real-time. For instance, multi-period mixed integer linear programming problem for applications in demand response schemes involving more than million variables are solved to optimality in less than 20 seconds of computation time through tighter formulation. A balanced, constrained, contiguous partitioning scheme capable of partitioning 20,000 bus power system in under one minute is developed for use in time sensitive application area such as controlled islanding.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.