Document Type

Article

Publication Date

5-2018

Publication Title

Communications Biology

Publisher

Nature

Abstract

Elasmoid scales are the most common epithelial appendage among vertebrates, however an understanding of the genetic mechanisms that underlie variation in scale shape is lacking. Using an F2 mapping cross between morphologically distinct cichlid species, we identified >40 QTL for scale shape at different body positions. We show that while certain regions of the genome regulate variation in multiple scales, most are specific to scales at distinct positions. This suggests a degree of regional modularity in scale development. We also identified a single QTL for variation in scale shape disparity across the body. Finally, we screened a QTL hotspot for candidate loci, and identified the Fgf receptor fgfr1b as a prime target. Quantitative rtPCR and small molecule manipulation support a role for Fgf signaling in shaping cichlid scales. While Fgfs have previously been implicated in scale loss, these data reveal new roles for the pathway in scale shape variation.

Comments

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Included in

Life Sciences Commons

Share

COinS