Graduate Research and Discovery Symposium (GRADS)
Infinite Billiard Tables and Involutive Surfaces
Advisor
Martin Schmoll
Document Type
Poster
Department
Mathematical Sciences
Publication Date
Spring 2013
Abstract
In the 20th century, mathematicians studied the motion of particles with elastic collisions (called \"billiards\") as simple examples showcasing a variety of interesting dynamical properties. In the last decade infinite billiard tables have attracted attention because new, interesting phenomena have been observed. Particularly, billiards in infinite billiard tables may have self-similar, fractal-like trajectories. We introduce a new tool for studying these infinite billiard systems, and show how this tool may be used to study billiards in the periodic Ehrenfest wind-tree model. We then provide a condition for determining when this tool can be applied to a given infinite billiard table.
Recommended Citation
Johnson, Chris and Schmoll, Martin, "Infinite Billiard Tables and Involutive Surfaces " (2013). Graduate Research and Discovery Symposium (GRADS). 78.
https://open.clemson.edu/grads_symposium/78