Document Type
Article
Publication Date
1-1-1998
Publication Title
Astronomy and Astrophysics
Publisher
EDP Sciences
Abstract
The Goddard High Resolution Spectrograph (GHRS) of the Hubble Space Telescope (HST) has been used to observe the boron 2500 A region of BD-13 3442. At a metallicity of [Fe/H]=-3.00, this is the most metal-poor star ever observed for B. Nearly 26 hours of exposure time resulted in a detection. Spectrum synthesis using the latest Kurucz model atmospheres yields an LTE boron abundance of log e(B)=0.01 +/- 0.20. This value is consistent with the linear relation of slope ~1.0 between log e(B[LTE]) and [Fe/H] found for 10 halo and disk stars by Duncan et al. 1997. Using the NLTE correction of Kiselman and Carlsson (1996), the NLTE boron abundance is log e(B)=0.93 +/- 0.20. This is also consistent with the NLTE relation determined by Duncan et al. (1997) where the slope of log e(B[NLTE]) vs. [Fe/H] is ~0.7. These data support a model in which most production of B and Be comes from the spallation of energetic C and O nuclei onto protons and He nuclei, probably in the vicinity of massive supernovae in star-forming regions, rather than the spallation of cosmic ray protons and alpha particles onto CNO nuclei in the general interstellar medium.
Recommended Citation
Please use publisher's recommended citation.
Comments
Published version found here: www.aanda.org