Document Type
Article
Publication Date
9-2012
Publication Title
Journal of Computational Chemistry
Publisher
Wiley
Abstract
The Gauss–Seidel (GS) method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the GS method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here, we report an efficient and exact (not requiring assumptions) method to parallelize iterations and to reduce the computational time as a linear/nearly linear function of the number of processes or computing units. In contrast to other existing solutions, our method does not require any assumptions and is equally applicable for solving linear and nonlinear equations. This approach is implemented in the DelPhi program, which is a finite difference Poisson–Boltzmann equation solver to model electrostatics in molecular biology. This development makes the iterative procedure on obtaining the electrostatic potential distribution in the parallelized DelPhi several folds faster than that in the serial code. Further, we demonstrate the advantages of the new parallelized DelPhi by computing the electrostatic potential and the corresponding energies of large supramolecular structures.
Recommended Citation
Please use publisher's recommended citation.
Comments
This manuscript has been published in the Journal of Computational Chemistry. Please find the published version here (note that a subscription is necessary to access this version):
http://onlinelibrary.wiley.com/doi/10.1002/jcc.23033/full
Wiley holds the copyright in this article