Document Type
Article
Publication Date
Fall 11-1-2008
Publication Title
The Astrophysical Journal
Volume
687
Issue
1
Publisher
The American Astronomical Society
Abstract
We present a detailed study of the prompt and afterglow emission from Swift GRB 061126 using BAT, XRT, UVOT data and multicolor optical imaging from 10 ground-based telescopes. GRB 061126 was a long burst (T90 ¼191 s) with four overlapping peaks in its -ray light curve. The X-ray afterglow, observed from 26 minutes to 20 days after the burst, shows a simple power-law decay with X ¼1:290 Æ0:008. Optical observations presented here cover the time range from 258 s (Faulkes Telescope North) to 15 days (Gemini North) after the burst; the decay rate of the optical afterglow shows a steep-to-shallow transition (from 1 ¼1:48 Æ0:06 to 2 ¼0:88 Æ0:03) ap-proximately 13 minutes after the burst. We suggest the early, steep component is due to a reverse shock and show that the magnetic energy density in the ejecta, expressed as a fraction of the equipartition value, is a few 10 times larger than in the forward shock in the early afterglow phase. The ejecta might be endowed with primordial magnetic fields at the central engine.The optical light curve implies a late time break at about 1.5 days after the burst, while the reisno evidence of the simultaneous break in the X-ray light curve. We model the broadband emission and show that some afterglow characteristics (the steeper decay in X-ray and the shallow spectral index from optical to X-ray) are difficult to explain in the framework of the standard fireball model. This might imply that the X-ray afterglow is due to an additional emission process, such as late-time central engine activity rather than blast-wave shock emission. The possible chromatic break at 1.5 days after the burst would give support to the additional emission scenario.
Recommended Citation
Please use publisher's recommended citation.
Comments
This manuscript has been published in the Astrophysical Journal. Please find the published version here (note that a subscription is necessary to access this version):
http://iopscience.iop.org/0004-637X/687/1/443