Date of Award
5-2015
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Legacy Department
Physics
Committee Chair/Advisor
Dr. Terry Tritt
Committee Member
Dr. Jian He
Committee Member
Dr. Apparao Rao
Committee Member
Dr. Catalina Marinescu
Abstract
The imminent oil crisis and global warming has revived research on sustainable energy resources. The researchers are seeking for alternative, clean, cheap, and safe resources of energy, such as solar energy, wind, sea waves, and heat. To this end thermoelectric materials are of technological interest owing to their ability of direct thermal-to-electrical energy conversion. In thermoelectricity, thermal gradients can be used to generate an electrical power output. Recent efforts in thermoelectrics are focused on developing higher efficient power generation materials. These materials can open many new horizons of applications, such as converting solar thermal energy to electricity, waste heat recovery, and as power generators for deep space exploration of our solar system when coupled with a radioactive heat source.
In this dissertation, the overall goal is to investigate both the n-type and p-type of the state of the art thermoelectric material, silicon germanium (SiGe), for high temperature power generation. Further improvement of thermoelectric performance of Si-Ge alloys hinges upon how to significantly reduce the as yet large lattice thermal conductivity, and optimizing the thermoelectric power factor PF.
Recommended Citation
Lahwal, Ali Sadek, "Thermoelectric Properties of Silicon Germanium: An Investigation of the Reduction of Lattice Thermal Conductivity and Enhancement of Power Factor" (2015). All Dissertations. 1482.
https://open.clemson.edu/all_dissertations/1482