Date of Award

5-2013

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Automotive Engineering

Committee Member

Dr. Laine Mears, Committee Chair

Committee Member

Dr. Thomas R. Kurfess

Committee Member

Dr. Tommy Tucker

Committee Member

Dr. Stan Birchfield

Abstract

This work has created a completely new geometry representation for the CAD/CAM area that was initially designed for highly parallel scalable environment. A methodology was also created for designing highly parallel and scalable algorithms that can use the developed geometry representation. The approach used in this work is to move parallel algorithm design complexity from an algorithm level to a data representation level. As a result the developed methodology allows an easy algorithm design without worrying too much about the underlying hardware. However, the developed algorithms are still highly parallel because the underlying geometry model is highly parallel. For validation purposes, the developed methodology and geometry representation were used for designing CNC machine simulation and tool path planning algorithms. Then these algorithms were implemented and tested on a multi-GPU system. Performance evaluation of developed algorithms has shown great parallelizability and scalability; and that main algorithm properties are required for modern highly parallel environment. It was also proved that GPUs are capable of performing work an order of magnitude faster than traditional central processors. The last part of the work demonstrates how high performance that comes with highly parallel hardware can be used for development of a next level of automated CNC tool path planning systems. As a proof of concept, a fully automated tool path planning system capable of generating valid G-code programs for 5-axis CNC milling machines was developed. For validation purposes, the developed system was used for generating tool paths for some parts and results were used for machining simulation and experimental machining. Experimental results have proved from one side that the developed system works. And from another side, that highly parallel hardware brings computational resources for algorithms that were not even considered before due to computational requirements, but can provide the next level of automation for modern manufacturing systems.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.