Date of Award

8-2017

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Engineering and Science Education

Committee Member

Dr. Pierluigi Pisu, Committee Chair

Committee Member

Dr. Mashrur Chowdury

Committee Member

Dr. Simona Onori

Committee Member

Dr. Andrej Ivanco

Abstract

Safety, mobility and environmental impact are the three major challenges in today's transportation system. As the advances in wireless communication and vehicle automation technologies, they have rapidly led to the emergence and development of connected and automated vehicles (CAVs). We can expect fully CAVs by 2030. The CAV technologies offer another solution for the issues we are dealing with in the current transportation system. In the meanwhile, urban roads are one of the most important part in the transportation network. Urban roads are characterized by multiple interconnected intersections. They are more complicated than highway traffic, because the vehicles on the urban roads are moving in multiple directions with higher relative velocity. Most of the traffic accidents happened at intersections and the intersections are the major contribution to the traffic congestions. Our urban road infrastructures are also becoming more intelligent. Sensor-embedded roadways are continuously gathering traffic data from passing vehicles. Our smart vehicles are meeting intelligent roads. However, we have not taken the fully advantages of the data rich traffic environment provided by the connected vehicle technologies and intelligent road infrastructures. The objective of this research is to develop a coordination control strategy for a group of connected vehicles under intelligent traffic environment, which can guide the vehicles passing through the intersections and make smart lane change decisions with the objective of improving overall fuel economy and traffic mobility. The coordination control strategy should also be robust to imperfect connectivity conditions with various connected vehicle penetration rate. This dissertation proposes a hierarchical control method to coordinate a group of connected vehicles travelling on urban roads with intersections. The dissertation includes four parts of the application of our proposed method: First, we focus on the coordination of the connected vehicles on the multiple interconnected unsignalized intersection roads, where the traffic signals are removed and the collision avoidance at the intersection area relays on the communication and cooperation of the connected vehicles and intersection controllers. Second, a fuel efficient hierarchical control method is proposed to control the connected vehicles travel on the signalized intersection roads. With the signal phase and timing (SPAT) information, our proposed approach is able to help the connected vehicles minimize red light idling and improve the fuel economy at the same time. Third, the research is extended form single lane to multiple lane, where the connected vehicle discretionary and cooperative mandatory lane change have been explored. Finally, we have analysis the real-world implementation potential of our proposed algorithm including the communication delay and real-time implementation analysis.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.