Date of Award
8-2018
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical Engineering
Committee Member
Dr. Phanindra Tallapragada, Committee Chair
Committee Member
Dr. Joshua Bostwick
Committee Member
Dr. Ethan Kung
Committee Member
Dr. Xiangchun Xuan
Abstract
This dissertation develops a modeling framework to address the problem of particle manipulation in low Reynolds number fluid flows. This framework combines singularity methods in low Reynolds number fluid dynamics with the theory of transport in phase space of dynamical systems. While dynamical systems theory offers tools to study the properties of geometric features in systems such as fluid flows, singularity methods enable the construction of models for low Reynolds number flows that are simple to work with and yet, preserve the essential geometric features of the flow. Hence, the combination of these techniques offers a natural framework for the study of particle transport in varied problems of the viscous/low Reynolds number flow regime. The first problem studied is that of inertial particle manipulation in microfluidic channels integrated with acoustically excited micro-bubbles. The Lagrangian Coherent Structures(LCS) of micro-bubble streaming flows serve as a guideline for placement of micro-bubbles within the channel in a manner that enhances focusing and size based separation of inertial particles. Second, the dynamics of viscous micro-rotors within a bounded domain is modeled. The influence of viscous boundary effects on the dynamics is assessed. The application of micro-rotors for the purpose of chaotic micro-mixing is explored using numerical simulations.
Recommended Citation
Sudarsanam, Senbagaraman, "Particle Manipulation in Viscous Flows: Singularity Models and Phase Space Boundaries" (2018). All Dissertations. 2181.
https://open.clemson.edu/all_dissertations/2181