Date of Award
12-2018
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Forestry and Environmental Conservation
Committee Member
Christopher Post, Committee Chair
Committee Member
Elena Mikhailova
Committee Member
William Bridges
Committee Member
Mark Schlautman
Abstract
Forests cover over one-third of the planet and provide unmeasurable benefits to the ecosystem. Forest managers have collected and processed countless amounts of data for use in studying, planning, and management of these forests. Data collection has evolved from completely manual operations to the incorporation of technology that has increased the efficiency of data collection and decreased overall costs. Many technological advances have been made that can be incorporated into natural resources disciplines. Laser measuring devices, handheld data collectors and more recently, unmanned aerial vehicles, are just a few items that are playing a major role in the way data is managed and collected. Field hardware has also been aided with new and improved mobile and computer software. Over the course of this study, field technology along with computer advancements have been utilized to aid in forestry and arboricultural applications. Three-dimensional point cloud data that represent tree shape and height were extracted and examined for accuracy. Traditional fieldwork collection (tree height, tree diameter and canopy metrics) was derived from remotely sensed data by using new modeling techniques which will result in time and cost savings. Using high resolution aerial photography, individual tree species are classified to support tree inventory development. Point clouds were used to create digital elevation models (DEM) which can further be used in hydrology analysis, slope, aspect, and hillshades. Digital terrain models (DTM) are in geographic information system (GIS), and along with DEMs, used to create canopy height models (CHM). The results of this study can enhance how the data are utilized and prompt further research and new initiatives that will improve and garner new insight for the use of remotely sensed data in forest management.
Recommended Citation
Ritter, Brian A., "Forestry and Arboriculture Applications Using High-Resolution Imagery from Unmanned Aerial Vehicles (UAV)" (2018). All Dissertations. 2274.
https://open.clemson.edu/all_dissertations/2274