Date of Award

12-2018

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Forestry and Environmental Conservation

Committee Member

Christopher Post, Committee Chair

Committee Member

Elena Mikhailova

Committee Member

William Bridges

Committee Member

Mark Schlautman

Abstract

Forests cover over one-third of the planet and provide unmeasurable benefits to the ecosystem. Forest managers have collected and processed countless amounts of data for use in studying, planning, and management of these forests. Data collection has evolved from completely manual operations to the incorporation of technology that has increased the efficiency of data collection and decreased overall costs. Many technological advances have been made that can be incorporated into natural resources disciplines. Laser measuring devices, handheld data collectors and more recently, unmanned aerial vehicles, are just a few items that are playing a major role in the way data is managed and collected. Field hardware has also been aided with new and improved mobile and computer software. Over the course of this study, field technology along with computer advancements have been utilized to aid in forestry and arboricultural applications. Three-dimensional point cloud data that represent tree shape and height were extracted and examined for accuracy. Traditional fieldwork collection (tree height, tree diameter and canopy metrics) was derived from remotely sensed data by using new modeling techniques which will result in time and cost savings. Using high resolution aerial photography, individual tree species are classified to support tree inventory development. Point clouds were used to create digital elevation models (DEM) which can further be used in hydrology analysis, slope, aspect, and hillshades. Digital terrain models (DTM) are in geographic information system (GIS), and along with DEMs, used to create canopy height models (CHM). The results of this study can enhance how the data are utilized and prompt further research and new initiatives that will improve and garner new insight for the use of remotely sensed data in forest management.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.