Date of Award

December 2019

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mathematical Sciences

Committee Member

Timo Heister

Committee Member

Qingshan Chen

Committee Member

Leo Rebholz

Committee Member

Fei Xue

Abstract

Applications in a variety of scientific disciplines use systems of Partial Differential Equations (PDEs) to model physical phenomena. Numerical solutions to these models are often found using the Finite Element Method (FEM), where the problem is discretized and the solution of a large linear system is required, containing millions or even billions of unknowns. Often times, the domain of these solves will contain localized features that require very high resolution of the underlying finite element mesh to accurately solve, while a mesh with uniform resolution would require far too much computational time and memory overhead to be feasible on a modern machine. Therefore, techniques like adaptive mesh refinement, where one increases the resolution of the mesh only where it is necessary, must be used. Even with adaptive mesh refinement, these systems can still be on the order of much more than a million unknowns (large mantle convection applications like the ones in [90] show simulations on over 600 billion unknowns), and attempting to solve on a single processing unit is infeasible due to limited computational time and memory required. For this reason, any application code aimed at solving large problems must be built using a parallel framework, allowing the concurrent use of multiple processing units to solve a single problem, and the code must exhibit efficient scaling to large amounts of processing units.

Multigrid methods are currently the only known optimal solvers for linear systems arising from discretizations of elliptic boundary valued problems. These methods can be represented as an iterative scheme with contraction number less than one, independent of the resolution of the discretization [24, 54, 25, 103], with optimal complexity in the number of unknowns in the system [29]. Geometric multigrid (GMG) methods, where the hierarchy of spaces are defined by linear systems of finite element discretizations on meshes of decreasing resolution, have been shown to be robust for many different problem formulations, giving mesh independent convergence for highly adaptive meshes [26, 61, 83, 18], but these methods require specific implementations for each type of equation, boundary condition, mesh, etc., required by the specific application. The implementation in a massively parallel environment is not obvious, and research into this topic is far from exhaustive.

We present an implementation of a massively parallel, adaptive geometric multigrid (GMG) method used in the open-source finite element library deal.II [5], and perform extensive tests showing scaling of the v-cycle application on systems with up to 137 billion unknowns run on up to 65,536 processors, and demonstrating low communication overhead of the algorithms proposed. We then show the flexibility of the GMG by applying the method to four different PDE systems: the Poisson equation, linear elasticity, advection-diffusion, and the Stokes equations. For the Stokes equations, we implement a fully matrix-free, adaptive, GMG-based solver in the mantle convection code ASPECT [13], and give a comparison to the current matrix-based method used. We show improvements in robustness, parallel scaling, and memory consumption for simulations with up to 27 billion unknowns and 114,688 processors. Finally, we test the performance of IDR(s) methods compared to the FGMRES method currently used in ASPECT, showing the effects of the flexible preconditioning used for the Stokes solves in ASPECT, and the demonstrating the possible reduction in memory consumption for IDR(s) and the potential for solving large scale problems.

Parts of the work in this thesis has been submitted to peer reviewed journals in the form of two publications ([36] and [34]), and the implementations discussed have been integrated into two open-source codes, deal.II and ASPECT. From the contributions to deal.II, including a full length tutorial program, Step-63 [35], the author is listed as a contributing author to the newest deal.II release (see [5]). The implementation into ASPECT is based on work from the author and Timo Heister. The goal for the work here is to enable the community of geoscientists using ASPECT to solve larger problems than currently possible. Over the course of this thesis, the author was partially funded by the NSF Award OAC-1835452 and by the Computational Infrastructure in Geodynamics initiative (CIG), through the NSF under Award EAR-0949446 and EAR-1550901 and The University of California -- Davis.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.