Date of Award
August 2020
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Environmental Engineering and Science
Committee Member
Michael Carbajales-Dale
Committee Member
Becky R Haney
Committee Member
Lindsay Shuller-Nickles
Committee Member
Brian Dean
Abstract
Economists rarely model the economy as explicitly bound by Earth's ecological systems. However, ecological systems act as constraints on the economy --- constraints that have historically been too far away from economic productivity to seriously consider. These ecological or biophysical constraints have been growing closer and more prominent as natural resources are depleted and environmental impacts increase. Modeling these constraints is what defines the emerging sub-discipline of biophysical economics, BPE. The goal of this dissertation is to map out and extend current biophysical economics modeling strategies. BPE provides the ideal framework to holistically understand energy transitions towards sustainability.
In Chapter 2, we examine and classify 110 biophysical models of the economy. Although BPE modelling approaches are varied, grouping the research by common characteristics reveals several active research areas. Gaps also exist. We identify which of those gaps could be promising avenues for future research.
In Chapter 3, we integrate US food production data into the environmental-input–output life cycle assessment (EIO-LCA) model. The extended model is used to characterize the food, energy, and water (FEW) intensities of every US economic sector, and is applied to every metropolitan statistical area (MSA) within the U.S. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy.
Chapter 4 analyzes datasets from multiple sources to build a detailed picture of the CO\textsubscript{2}-eq emissions generated by coal rail transportation. The results show that rail transportation distances range from 0 km to over 3500 km. Transportation emissions can be as high as 35\% of a power plant’s operational emissions --- a number significantly higher than previous literature estimates. Additionally, implementation of post-combustion Carbon Capture and Storage (CCS) at existing plants may further increase transportation emissions.
Chapter 5 uses an agent-based model to demonstrate the potential economic impacts of a resource supply shock. Economic “agents” mine resources and invent technology in order to grow their economy. Economic growth, however, comes with a cost. Unexpected, large economic collapse can arise from a shock to even a single resource, due to each resource’s interdependent role in the economy.
Recommended Citation
Sherwood, John, "Building a Strategy for Key Energy Transitions: Modeling Biophysical Economics" (2020). All Dissertations. 2665.
https://open.clemson.edu/all_dissertations/2665