Date of Award

5-2019

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Automotive Engineering

Committee Member

Dr. Zoran Filipi, Committee Chair

Committee Member

Dr. Mark Hoffman

Committee Member

Dr. Ardalan Vahidi

Committee Member

Dr. Robert Prucka

Abstract

The Organic Rankine Cycle (ORC) has proven to be a promising technology for Waste Heat Recovery (WHR) systems in heavy duty diesel engine applications. However, due to the highly transient heat source, controlling the working fluid flow through the ORC system and maximizing the heat recovery is a challenge for real time application. To that end, this research resulted in the following main developments.

The first new development is in the area of heat exchanger modeling. The heat exchanger is a key component within the WHR system and it governs the dynamics of the complete ORC system. The heat exchanger model is extended using a thermal image data to improve its phase length prediction capability. It’s shown that the new identified empirical equations help improve the phase length estimation by 43% over a set of transient experiments. As a result, the model can be used to develop an improved control oriented moving boundary model and to provide insights into evaporator design.

The second new development is the advancement of the control design of an ORC system. With advanced knowledge of the heat source dynamics, there is potential to enhance power optimization from the WHR system through predictive optimal control. The proposed approach in this this dissertation is a look-ahead control strategy where, the future vehicle speed is predicted utilizing road topography and V2V connectivity. The forecasted vehicle speed is utilized to predict the engine speed and torque, which facilitates estimation of the engine exhaust conditions used in the ORC control model. In the simulation study, a reference tracking controller is designed based on the Model Predictive Control (MPC) methodology. Two variants of Non-linear MPC (NMPC) are evaluated: an NMPC with look-ahead exhaust conditions and a baseline NMPC without the knowledge of future exhaust conditions. Simulation results show no particular improvement to working fluid superheat tracking at the evaporator outlet via the look-ahead strategy for a drive cycle. However, the look-ahead control strategy does provide a substantial reduction in system control effort via dampening the heavily transient working fluid pump actuation, enhancing pump longevity, health, and reducing pump power consumption. This reduction in pump actuation helps the NMPC with preview to maintain the superheat lower than the NMPC without this feature for certain frequency of the exhaust conditions. Overall, NMPC with preview feature can help reduce parasitic losses, like pump power and improve power generation.

The third development addresses the modeling errors and measurement inaccuracies for NMPC implementation. NMPC is inherently a state feedback system and for that reason an Extended Kalman Filter (EKF) is used to estimate unmeasurable states inside the ORC evaporators based on exhaust gas and working fluid temperatures. Since it is not realistic to expect that the system model will perfectly describe the behavior of the evaporator dynamics in all operating conditions, the estimator is therefore augmented with a disturbance model for offset free MPC tracking. Simulation study shows that the augmented system is perfectly capable of discarding the model errors and rejecting the measurement inaccuracies. Moreover, experimental validation confirms that no steady state error is observed during online implementation of the augmented EKF.

Finally, experimental validation of the designed NMPC control strategy was conducted. The performance of the NMPC was evaluated on a heavily transient drive cycle, as well as on a sinusoidal generated heat signals. Both experimental and simulated sinusoidal exhaust condition shows that evaporator under consideration inherently helps attenuate the fluctuating exhaust conditions due to its thermal inertia especially for heat signals of shorter time periods. However for slow changing exhaust conditions, a slower rate of change of working fluid flow helps in inhibiting temperature overshoot at the evaporator outlet.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.