Date of Award

12-2022

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mathematical Sciences

Committee Chair/Advisor

Keri Sather-Wagstaff

Committee Member

Michael Burr

Committee Member

Shuhong Gao

Committee Member

Matthew Macauley

Abstract

In this dissertation we give a combinatorial characterization of all the weighted $r$-path suspensions for which the $f$-weighted $r$-path ideal is Cohen-Macaulay. In particular, it is shown that the $f$-weighted $r$-path ideal of a weighted $r$-path suspension is Cohen-Macaulay if and only if it is unmixed. Type is an important invariant of a Cohen-Macaulay homogeneous ideal in a polynomial ring $R$ with coefficients in a field. We compute the type of $R/I$ when $I$ is any Cohen-Macaulay $f$-weighted $r$-path ideal of any weighted $r$-path suspension, for some chosen function $f$. In particular, this computes the type for all weighted trees $T_\omega$ such that the corresponding ideal is Cohen-Macaulay.

Comments

Please use the latest submission, thank you

Included in

Algebra Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.