Date of Award

8-2023

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mathematical Sciences

Committee Chair/Advisor

Dr. Mishko Mitkovski

Committee Member

Dr. Shitao Liu

Committee Member

Dr. Martin Schmoll

Committee Member

Dr. Cody Stockdale

Committee Member

Dr. James Coykendall

Abstract

Let H be a reproducing kernel Hilbert space with reproducing kernel elements {Kx} indexed by a measure space {X,mu}. If H can be embedded in L2(X,mu), then H can be viewed as a framed Hilbert space. We study concentration of orthonormal sequences in such reproducing kernel Hilbert spaces.

Defining different versions of concentration, we find quantitative upper bounds on the number of orthonormal functions that can be classified by such concentrations. Examples are shown to prove sharpness of the bounds. In the cases that we can add "concentrated" orthonormal vectors indefinitely, the growth rate of doing so is shown.

Included in

Analysis Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.