Date of Award

8-2023

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Industrial Engineering

Committee Chair/Advisor

Dr. Mary E. Kurz

Committee Member

Dr. Hamed Rahimian

Committee Member

Dr. Scott Mason

Committee Member

Dr. Kevin Taaffe

Abstract

The global competitive environment leads companies to consider how to produce high-quality products at a lower cost. Mixed-model assembly lines are often designed such that average station work satisfies the time allocated to each station, but some models with work-intensive options require more than the allocated time. Sequencing varying models in a mixed-model assembly line, mixed-model sequencing (MMS), is a short-term decision problem that has the objective of preventing line stoppage resulting from a station work overload. Accordingly, a good allocation of models is necessary to avoid work overload. The car sequencing problem (CSP) is a specific version of the MMS that minimizes work overload by controlling the sequence of models. In order to do that, CSP restricts the number of work-intensive options by applying capacity rules. Consequently, the objective is to find the sequence with the minimum number of capacity rule violations.

In this dissertation, we provide exact and heuristic solution approaches to solve different variants of MMS and CSP. First, we provide five improved lower bounds for benchmark CSP instances by solving problems optimally with a subset of options. We present four local search metaheuristics adapting efficient transformation operators to solve CSP. The computational experiments show that the Adaptive Local Search provides a significant advantage by not requiring tuning on the operator weights due to its adaptive control mechanism.

Additionally, we propose a two-stage stochastic program for the mixed-model sequencing (MMS) problem with stochastic product failures, and provide improvements to the second-stage problem. To tackle the exponential number of scenarios, we employ the sample average approximation approach and two solution methodologies. On one hand, we develop an L-shaped decomposition-based algorithm, where the computational experiments show its superiority over solving the deterministic equivalent formulation with an off-the-shelf solver. We also provide a tabu search algorithm in addition to a greedy heuristic to tackle case study instances inspired by our car manufacturer partner. Numerical experiments show that the proposed solution methodologies generate high-quality solutions by utilizing a sample of scenarios. Particularly, a robust sequence that is generated by considering car failures can decrease the expected work overload by more than 20\% for both small- and large-sized instances. To the best of our knowledge, this is the first study that considers stochastic failures of products in MMS.

Moreover, we propose a two-stage stochastic program and formulation improvements for a mixed-model sequencing problem with stochastic product failures and integrated reinsertion process. We present a bi-objective evolutionary optimization algorithm, a two-stage bi-objective local search algorithm, and a hybrid local search integrated evolutionary optimization algorithm to tackle the proposed problem. Numerical experiments over a case study show that while the hybrid algorithm provides a better exploration of the Pareto front representation and more reliable solutions in terms of waiting time of failed vehicles, the local search algorithm provides more reliable solutions in terms of work overload objective. Finally, dynamic reinsertion simulations are executed over industry-inspired instances to assess the quality of the solutions. The results show that integrating the reinsertion process in addition to considering vehicle failures can keep reducing the work overload by around 20\% while significantly decreasing the waiting time of the failed vehicles.

Author ORCID Identifier

0000-0001-6671-9059

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.