Date of Award

12-2023

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Bioengineering

Committee Chair/Advisor

Jeremy L. Gilbert, PhD

Committee Member

Martine LaBerge, PhD

Committee Member

John D. DesJardins PhD

Committee Member

Brian C. Dean, PhD

Abstract

Retrieval studies document Ti-6Al-4V β phase dissolution within total hip replacement systems. A gap persists in our mechanistic understanding and existing standards fail to reproduce this damage. This thesis aims to (1) elucidate the Ti-6Al-4V selective dissolution mechanism as functions of solution chemistry, electrode potential and temperature; (2) investigate the effects of adverse electrochemical conditions on additively manufactured (AM) titanium alloys and (3) apply machine learning to predict the Ti-6Al-4V dissolution state. We hypothesized that (1) cathodic activation and inflammatory species (H2O2) would degrade the Ti-6Al-4V oxide, promoting dissolution; (2) AM Ti-6Al-4V selective dissolution would occur and (3) near field electrochemical impedance spectra (nEIS) would distinguish between dissolved and polished Ti-6Al-4V, allowing for deep neural network prediction. First, we show a combinatorial effect of cathodic activation and inflammatory species, degrading the oxide film’s polarization resistance (Rp) by a factor of 105 Ωcm2 (p = 0.000) and inducing selective dissolution. Next, we establish a potential range (-0.3 V to –1 V) where inflammatory species, cathodic activation and increasing solution temperatures (24 oC to 55 oC) synergistically affect the oxide film. Then, we evaluate the effect of solution temperature on the dissolution rate, documenting a logarithmic dependence. In our second aim, we show decreased AM Ti-6Al-4V Rp when compared with AM Ti-29Nb-21Zr in H2O2. AM Ti-6Al-4V oxide degradation preceded pit nucleation in the β phase. Finally, in our third aim, we identified gaps in the application of artificial intelligence to metallic biomaterial corrosion. With an input of nEIS spectra, a deep neural network predicted the surface dissolution state with 96% accuracy. In total, these results support the inclusion of inflammatory species and cathodic activation in pre-clinical titanium devices and biomaterial testing.

Author ORCID Identifier

0000-0001-6195-579X

Included in

Biomaterials Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.