Date of Award

5-2010

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Mathematical Science

Committee Chair/Advisor

Rebholtz, Leo

Committee Member

Cox , Chris

Committee Member

Kaye , Nigel

Abstract

This thesis is an investigation of numerical methods for approximating solutions to fluid flow problems, specifically the Navier-Stokes equations (NSE) and magnetohydrodynamic equations (MHD), with an overriding theme of enforcing more physical behavior in discrete solutions. It is well documented that numerical methods with more physical accuracy exhibit better long-time behavior than comparable methods that enforce less physics in their solutions. This work develops, analyzes and tests finite element methods that better enforce mass conservation in discrete velocity solutions to the NSE and MHD, helicity conservation for NSE, cross-helicity conservation in MHD, and magnetic field incompressibility in MHD.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.