Date of Award
12-2010
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Legacy Department
Mechanical Engineering
Committee Chair/Advisor
Huang, Yong
Committee Member
Pearson , L. Wilson
Committee Member
Kurfess , Thomas R.
Abstract
Wireless sensing technologies have raised widespread interests in the applications for monitoring fast rotating or moving machinery structures in manufacturing environments. Over the past five years, a few wireless sensor systems have been implemented and proven to feasibly work under fast rotation conditions. However, few of these studies evaluated data transmission performance of the wireless communication systems. Although the manufacturing environments are known to be harsh for wireless communication, in many cases, an excellent data throughput is critical for such systems. Conventional statistical methods for studying wireless communication channels are not sufficient in this specific field.
This dissertation presents systematic experiments to understand and characterize the behavior of a 2.4 GHz band wireless channel between a fast rotating transmitter and a stationary data receiver. The experiments prove, in manufacturing machines, multipath propagation induced by metallic objects causes high power attenuation of radio signals during transmitter motion, and the consequence, low received signal power, is recognized as the major cause of transmission errors.
The dissertation proposes a deterministic packet error rate (PER) predictive model for rotating wireless measuring systems using IEEE 802.15.4 sensor radios. The model consists of three sub-models that predict power attenuation, bit error rate (BER), and PER in three stages for given specifications regarding environment, radio transmission, and rotation. The dissertation provides experimental validation of the sub-models and discusses their limitations and prediction errors. By either experiments or simulations, two data transmission protocols, automatic retransmission request (ARQ) method and online error avoidance algorithm, are proved efficient for a reliable wireless communication of such sensor radios.
As the first effort to characterize and model such radio channels, the dissertation provides in-depth understandings of the channels' fast varying behavior, achieves prediction guidance for the channels' communication performance, and introduces prospective transmission protocols for performance enhancement.
Recommended Citation
Tang, Lei, "PACKET ERROR RATE PREDICTIVE MODEL FOR SENSOR RADIOS ON FAST ROTATING STRUCTURES" (2010). All Dissertations. 639.
https://open.clemson.edu/all_dissertations/639