Date of Award
5-2012
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Legacy Department
Bioengineering
Committee Chair/Advisor
LaBerge, Martine
Committee Member
Alexis , Frank
Committee Member
Simionescu , Dan
Committee Member
Webb , Ken
Abstract
Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material. Work by others has shown that the use of oral and intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic osteolysis. However, the systemic delivery and the high solubility of BPs results in a predominant portion of the drug being excreted via the kidney without reaching its target, bone.
This doctoral research project is focused on the development and evaluation of a novel method to administer BPs locally using the inherent wear of UHMWPE for possible use as an anti-osteolysis treatment. For new materials to be considered, they must be mechanically and tribologically comparable to the current gold standard, UHMWPE. In order to evaluate this material, mechanical, drug elution and tribological experiments were performed to allow assessment of material properties. Tensile tests showed comparable yield stress and pin-on-disk testing showed comparable wear to standard virgin UHMWPE. Further, drug elution tests have shown that BP was released from the enriched material both in static and dynamic conditions. Additionally, an aggressive 2 million cycle total knee simulator experiment has shown statistically similar wear results for the two materials. Overall, this research has provided the groundwork for further characterization and development of a new potential material for total joint replacements as an enhancement to standard UHMWPE. This material shows significant potential as an alternative bearing material to indirectly increase TJR longevity by addressing osteolysis related issues.
Recommended Citation
Wright-walker, Cassandra, "Evaluation of a Bisphosphonate Enriched Ultra-High Molecular Weight Polyethylene for Enhanced Total Joint Replacement Bearing Surface Functionality" (2012). All Dissertations. 790.
https://open.clemson.edu/all_dissertations/790