Date of Award

5-2013

Document Type

Thesis

Degree Name

Master of Science (MS)

Legacy Department

Physics

Committee Chair/Advisor

Meyer, Brad

Committee Member

Brittain , Sean

Committee Member

King , Jeremy

Abstract

My Masters research involves simulations of a supernova whereby a shock wave of constant Mach number is sent through a 15-solar-mass star evolved to the point of core-collapse. The resulting nucleosynthesis is examined with the intent of explaining the overproduction, relative to solar values, of nitrogen-15 and oxygen-18 abundances in supernova presolar graphite grains, as experimentally determined by Groopman et al. via a NanoSIMS analysis. We find such overabundances to be present in the helium-rich zone. Oxygen-18 is leftover from presupernova helium burning while nitrogen-15 is produced by explosive helium burning. Interestingly, anomalous excesses in molybdenum-95 and molybdenum-97 abundances in SiC X grains, discovered by Pellin et. al. using the CHARISMA instrument, probably arise from explosive helium burning as well. These results signal the importance of the helium-rich zone for supernova presolar grain growth. We suggest that matter deep from the supernova, which is rich in iron-peak elements, gets injected into the helium-rich zone. Small TiC grains form in this material. These subgrains then traverse the helium-rich zone and serve as seeds for the growth of the graphite or SiC X grains.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.