Date of Award
12-2014
Document Type
Thesis
Degree Name
Master of Science (MS)
Legacy Department
Mechanical Engineering
Committee Chair/Advisor
Wagner, John R
Committee Member
Daqaq , Mohammed F
Committee Member
Wang , Yue
Abstract
The increase in global warming and the dwindling supplies of fossil fuels have shifted the focus from traditional to alternate sources of energy. This has resulted in a concerted effort towards finding new energy sources as well as better understanding traditional renewable energy sources such as wind and solar power. In addition to the shift in focus towards alternate energy, the last two decades have offered a dramatic rise in the use of digital technologies such as wireless sensor networks that require small but isolated power supplies. Energy harvesting, a method to gather energy from ambient sources including sunlight, vibrations, heat, etc., has provided some success in powering these systems. One of the unexplored areas of energy harvesting is the use of atmospheric temperature variations to obtain usable energy. This thesis investigates an innovative mechanism to extract energy from atmospheric variations using ethyl chloride filled mechanical bellows. The energy harvesting process was divided into two parts. The first part consisted of extracting energy from the temperature variations and converting it into the potential energy stored in a linear coil spring. This was achieved by designing and fabricating an apparatus that consisted of an ethyl chloride filled bellows working against a mechanical spring in a closed and controlled environment. The bellows expanded/contracted depending upon the ambient temperature and the energy harvested was calculated as a function of the bellows' length. The experiments showed that 6 J of potential energy may be harvested for a 23 C change in temperature. The numerical results closely correlated to the experimental data with an error magnitude of 1%. In regions with high diurnal temperature variation, such an apparatus may yield approximately 250 microwatts depending on the diurnal temperature range. The second part of the energy harvesting process consisted of transforming linear expansion of the bellows into electric power. A system was designed and simulated using Mathworks Simulink and SimDriveline packages that converted the linear oscillations of the bellows into electric power. This was achieved in two steps; a gear train was designed that would convert the linear displacement of the bellows into potential energy stored in a spiral spring. The spiral spring would then periodically engage to a small generator producing electric power. The electrical power generated was found to depend solely on the potential energy stored in the spring. It was discovered that for a sinusoidal force with constant amplitude and frequency, the potential energy stored in the spring depended on the duration of force input and the parameters of the drivetrain such as the spring stiffness, the gear ratios, and the pinion radii. After simulating the system for different parameters, an optimal set of values was presented to maximize the electrical energy output for a given duration of time. For constant amplitude (120 N) sinusoidal force input with a time period of T seconds, the system stored 37 J, 65 J, and 90 J after a time of 3T, 5T, and 7T, respectively. The electric power output was 7.14 microwatts for a conversion efficiency of 5%. The next step is building a physical geartrain generator assembly based on the design presented in the thesis. The physical system will first be verified by simulating the force input using a pneumatic cylinder. The two parts of the research experiment can then be integrated into one system that would generate electric power directly from temporal temperature and pressure variations.
Recommended Citation
Ali, Gibran, "Design, Analysis and Implementation of an Experimental System to Harvest Energy From Atmospheric Temperature Variations Using Ethyl Chloride Filled Bellows" (2014). All Theses. 1862.
https://open.clemson.edu/all_theses/1862