Date of Award

8-2014

Document Type

Thesis

Degree Name

Master of Science (MS)

Legacy Department

Civil Engineering

Committee Chair/Advisor

Pang, Weichiang

Committee Member

Schiff , Scott D

Committee Member

Rangaraju , Prasad R

Abstract

As the developing world is industrializing and people migrate to cities, the need for infrastructure is growing quickly and concrete has become one of the most widely used construction materials. One poor construction practice observed widely across the developing world is the minimal use of reinforcement for concrete structures due to the high cost of steel. As a low-cost, high-performance material with good mechanical properties, bamboo has been investigated as an alternative to steel for reinforcing concrete. The goal of this research is to add to the knowledge base of bamboo reinforced concrete (BRC) by investigating a unique stirrup design and testing the lap-splicing of flexural bamboo reinforcement in concrete beams. Component tests on the mechanical properties of Moso bamboo (Phyllostachys edulis) were performed, including tensile tests and pull-out tests. The results of the component tests were used to design and construct 13 BRC beams which were tested under monotonic gravity loading in 3 and 4-point bending tests. Three types of beams were designed and tested, including shear controlled, flexure controlled, and lap-spliced flexure controlled beams. The test results indicated that bamboo stirrups increased unreinforced concrete beam shear capacities by up to 259%. The flexural bamboo increased beam capacities by up to 242% with an optimal reinforcement ratio of up to 3.9%, assuming sufficient shear capacity. Limitations of the bamboo reinforcement included water absorption as well as poor bonding capability to the concrete. The test results show that bamboo is a viable alternative to steel as tensile reinforcement for concrete as it increases the ultimate capacity of the concrete, allows for high deflections and cracks, and provides warning of impending structural failure.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.