Date of Award

5-2020

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Mechanical Engineering

Committee Member

Cameron Turner

Committee Member

Joshua Summers

Committee Member

Garrett Pataky

Abstract

With the application of using surrogate models with General Purpose Graphics Processing (GPGPU) computing to meet the need for “real-time” characterization of nonlinear anisotropic material systems and the growing work of using multiaxial robotic test frames for material characterization, there has been a solution for a specific application towards additive manufacturing materials, specifically polymers. Traditional testing using uniaxial and biaxial test machines has proven insufficient in characterizing the material properties of additive manufacturing materials, therefore developing a need for a multiaxial testing machine for characterization that can dynamically excite strain states for a more in-depth look at the material properties. This design report presents the design of a multiaxial robotic test frame that incorporates a Stewart-Gough (SG) platform design to allow 6 degrees-of-freedom for multiple and combined loading applications. This solution is the next generation multiaxial machine focusing on additive manufacturing materials, specifically polymers. The problem statement is the following: Design and fabricate a multiaxial robotic test frame that can test additive manufacturing materials, focusing on polymers and some metals, in 6 degrees-of-freedom while improving on performance and cost over the CSM design.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.