Date of Award

December 2020

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Mathematical Sciences

Committee Member

Felice Manganiello

Committee Member

Shuhong Gao

Committee Member

Kevin James

Abstract

Fault tolerant quantum computation is a critical step in the development of practical quantum computers. Unfortunately, not every quantum error correcting code can be used for fault tolerant computation. Rengaswamy et. al. define CSS-T codes, which are CSS codes that admit the transversal application of the T gate, which is a key step in achieving fault tolerant computation. They then present a family of quantum Reed-Muller fault tolerant codes. Their family of codes admits a transversal T gate, but the asymptotic rate of the family is zero. We build on their work by reframing their CSS-T conditions using the concept of self-orthogonality. Using this framework, we define an alternative family of quantum Reed-Muller fault tolerant codes. Like the quantum Reed-Muller family found by Rengaswamy et. al., our family admits a transversal T gate, but also has a nonvanishing asymptotic rate.

We prove three key results in our search for a Reed-Muller CSS-T family with a nonvanishing rate. First, we show an equivalence between a code containing a self-dual subcode and the dual of that code being self-orthogonal. This allows us to more easily determine if a pair of codes define a CSS-T code. Next, we show that if C1 and C2 are both Reed-Muller codes that form a CSS-T code, C1 must be self-orthogonal. This limits the rate of any family that is constructed solely from Reed-Muller codes. Lastly, we define a family of CSS-T codes by choosing C1 = RM(r, 2r + 1) and C2 = RM(0, 2r + 1) for some nonnegative integer r. We show that this family has an asymptotic rate of 1/2, and show that it is the only possible CSS-T family constructed only from Reed-Muller codes where C1 is self dual.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.