Date of Award

12-2021

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical and Computer Engineering (Holcomb Dept. of)

Committee Chair/Advisor

Jon Calhoun

Committee Member

Walt Ligon

Committee Member

Melissa Smith

Committee Member

Ulf Schiller

Abstract

High Performance Computing (HPC) applications are always expanding in data size and computational complexity. It is becoming necessary to consider fault tolerance and system recovery to reduce computation and resource cost in HPC systems. The computation of modern large scale HPC applications are facing bottleneck due to computation complexities, increased runtime and large data storage requirements. These issues can not be ignored in current supercomputing era. Data compression is one of the effective ways to address data storage issue. Among data compression, the lossy compression is much more feasible and efficient than the traditional lossless compression due to low I/O bandwidth of large applications. The goal of this work is to observe and find the optimal lossy compression configuration which has the minimal user controlled error with maximum compression ratio. For this purpose two large scale application have been experimented with various parameters of well known compression method called SZ. The first application is a quantum chemistry based HPC application NWChem. The second application is the vascular blood flow simulation data generated by parallel lattice Boltzmann code for fluid flow simulations with complex geometries called HemeLB. SZ compressor is integrated in the applications' code for testing the correctness and scalability and give a comparative picture of the performance change. Lastly the statistical methods are tested to pre-determine the data distortion for different error bounds.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.