Date of Award

8-2022

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical Engineering

Committee Chair/Advisor

Linke Guo

Committee Member

Harlan Russell

Committee Member

Carl Baum

Abstract

As the field of Internet of Things (IoT) continues to grow, a variety of wireless signals fill the ambient wireless environment. These signals are used for communication, however, recently wireless sensing has been studied, in which these signals can be used to gather information about the surrounding space. With the development of 802.11n, a newer standard of WiFi, more complex information is available about the environment a signal propagates through. This information called Channel State Information (CSI) can be used in wireless sensing. With the help of Deep Learning, this work attempts to generate a fingerprinting technique for localizing a ZigBee interference source in the presence of 802.11.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.