Date of Award
12-2022
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Mechanical Engineering
Committee Chair/Advisor
Suyi Li
Committee Member
Oliver Myers
Committee Member
Ian Walker
Abstract
Shape memory alloys (SMAs) describe a group of smart metallic materials that can be deformed by external magnetic, thermal, or mechanical influence and then returned to a predetermined shape through the cycling of temperature or stress. They have several advantages, such as having excellent mechanical properties, being low cost, and being easily manufactured, while also providing a compact size, completely silent operation, high work density, and requiring less maintenance over time. SMAs can undergo sold-to-solid phase transformations, and it is because of these phase transformations that they can experience shape memory effect (SME); or the ability to recover from a deformed shape to an initially determined shape through the cycling of temperature. However, since SME requires the cycling of temperature to actuate SMAs, the actuation frequency of these materials has been slow for small-scale applications, as actuation speed is limited by the time it takes to transition from a higher temperature (actuated, pre-determined state) to a lower temperature (flexible, reconfigurable state). While SMAs are known to be highly advantageous, their main drawback is that they are one of the slowest actuation methods in the field of origami robotics. SMAs cannot actuate quickly enough cyclically due to the long cooling times required to get from their austenite (higher temperature, actuated, pre-determined state) phase to their martensite (lower temperature, flexible, reconfigurable state) phase. Researchers have attempted to achieve a higher actuation speed in previous projects by using active cooling agents. However, this study investigated the use of SMAs to initiate high-frequency cyclic movement through a small-scale origami fold without an active cooling source. This study used a combination of different system design parameters to mechanically hasten the actuation speed of a folding hinge with no cooling component present. Through only design and a complete understanding of the SMAs, this study achieved consistent and relatively high results (>1.5 Hz) of an actuation speed for a system of this size. This study discovered knowledge regarding the composition, material properties, and actuation limits of SMAs, and a new systematic design method was proposed for creating origami robots.
Recommended Citation
Den Haese, Jessica M., "Utilizing Systematic Design and Shape Memory Alloys to Enhance Actuation of Modular High-Frequency Origami Robots" (2022). All Theses. 3934.
https://open.clemson.edu/all_theses/3934