Date of Award

3-2023

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical Engineering

Committee Chair/Advisor

Dr. Yingjie Lao

Committee Member

Dr. Zheyu Zhang

Committee Member

Dr. Christopher Edrington

Abstract

This study investigates the threat of hardware Trojans (HTs) in power electronics applications, a rising concern due to the growing demand for cost-effective embedded solutions in power systems. With the supply chain for electronic hardware devices expanding globally, particularly to low-cost foundries in foreign locations, there is an increasing risk of HT attacks. While there has been extensive research on HTs in computer applications, little consideration has been given to their threat in power electronics. This study demonstrates the effectiveness of a power electronics HT by implementing a novel HT design into a gate drive circuit. Additionally, the research proposes several HT designs that exploit factors unique to power circuits, such as high power delivery and analog circuitry in order to illustrate the distinct attack space. The research highlights the need for enhanced detection, protection, and prevention methods in power electronics applications and offers a roadmap for future studies to develop more effective countermeasures and algorithms to mitigate the risks of HT attacks in power electronics.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.