Date of Award
8-2023
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Environmental Engineering and Earth Science
Committee Chair/Advisor
Dr. Kevin Finneran
Committee Member
Dr. David Ladner
Committee Member
Dr. Sudeep Popat
Abstract
Treatment of chlorinated solvent-contaminated aquifers with in-situ activated carbon offers a simple yet cost-effective treatment opportunity, yet the interactions between activated carbon and the chlorinated solvents and their daughter products are not well understood.
The objective of this research is to demonstrate the impacts of in situ activated carbon on complete reductive dechlorination of chlorinated solvents in contaminated aquifer material with mixed dehalogenating cultures. This research seeks to characterize the sorption of trichloroethene and its daughter products cis-dichloroethene, vinyl chloride, and ethene to granular activated carbon and how that sorption relates to the removal of trichloroethene from contaminated material in the presence of activated carbon.
This study employed sorption isotherms of trichloroethene and its less chlorinated daughter products, microbial batch assays, and correction of a prior data set to shed light on interactions between chlorinated solvents and activated carbon and to advance the understanding and future implementation of in-situ activated carbon.
The results of these experiments suggest complete reductive dechlorination of trichloroethene is inhibited at high mass loadings of granular activated carbon that are suggested by practitioners. The results of these experiments suggest granular activated carbon cannot adequately sorb vinyl chloride, ethene, and methane. The results also suggest that increasing the mass loading of granular activated carbon accelerates trichloroethene removal from a system as well as decreasing the reduction of trichloroethene and production of less chlorinated daughter products such as cis-dichloroethene, vinyl chloride, and ethene. The results also suggest the primary degradation pathway of trichloroethene is reduction of trichloroethene to cis-dichloroethene via metal reducers in the presence of ferric iron as an electron donor.
Recommended Citation
Gregory, Reagan, "Impact of Granular Activated Carbon on In-Situ Reductive Dechlorination of Chlorinated Solvents" (2023). All Theses. 4117.
https://open.clemson.edu/all_theses/4117