Date of Award

5-2025

Document Type

Thesis

Degree Name

Master of Forest Resources (MFR)

Department

Forest Resources

Committee Chair/Advisor

Dr. Elena Mikhailova

Committee Member

Dr. Christopher Post

Committee Member

Dr. Mark Schlautman

Abstract

Soil-based emissions from land conversions are often overlooked in climate planning. The objectives of this study were to use quantitative data on soil-based greenhouse gas (GHG) emissions for the state of Georgia (GA) (USA) to examine context-specific (temporal, biophysical, economic, and social) climate planning and legal options to deal with these emissions. Currently, 30% of the land in GA has experienced anthropogenic land degradation (LD) primarily due to agriculture (64%). All seven soil orders were subject to various degrees of anthropogenic LD. Increases in overall LD between 2001 and 2021 indicate a lack of land degradation neutrality (LDN) in GA. Besides agricultural LD, there was also LD caused by increased development through urbanization, with 15,197.1 km2 developed, causing midpoint losses of 1.2 × 1011 kg of total soil carbon (TSC) with a corresponding midpoint social cost from carbon dioxide (CO2) emissions (SC-CO2) of USD $20.4B (where B = billion = 109, $ = U.S. dollars (USD)). Most developments occurred in the Metro Atlanta and Coastal Economic Development Regions, which indicates reverse climate change adaptation (RCCA). Soil consumption from developments is an important issue because it limits future soil or forest carbon (C) sequestration potential in these areas. Soil-based emissions should be included in GA’s carbon footprint. Understanding the geospatial and temporal context of land conversion decisions, as well as the social and economic costs, could be used to create incentives for land management that limit soil-based GHG emissions in a local context with implications for relevant United Nations (UN) initiatives.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.