Date of Award
12-2008
Document Type
Thesis
Degree Name
Master of Science (MS)
Legacy Department
Computer Engineering
Committee Chair/Advisor
Wang, Kuang-Ching
Committee Member
Russell , Harlan
Committee Member
Martin , Jim
Abstract
An integrated routing and distributed scheduling approach for fast deployable IEEE 802.16e networks is presented where distributed base stations with dual radios form a mesh backhaul and subscriber stations communicate through these base stations. The mesh backhaul is formed via an IEEE 802.16e mesh mode radio on each base station, while the subscriber stations communicate with base stations via PMP mode radios. The proposed routing scheme divides the deployed network into several routing zones. Each routing zone contains several base stations that form the mesh backhaul with one base station equipped with either a fiber, satellite or any other point-to-point backhaul link to reach a gateway on the core network (for example, Internet or Enterprise Network). Traffic from the subscriber stations is routed by the serving base station through the mesh to the gateway-connected base station using min-hop routing metric. Mobile IP scheme is used to assign a care-of address to a subscriber station that moves from one routing zone to the other, thereby avoiding a change in IP address for network layer applications. The scheduling approach consists of two phases. In the first phase, a centralized mesh scheduling algorithm is applied with collected information on network topology, radio parameters, and initial QoS provisioning requirements. At the same time, each base station derives a PMP schedule for actual demands from associated subscriber stations constrained by the initial mesh schedule. In the second phase, each base station monitors its carried PMP traffic load statistics; to accommodate traffic load changes in a distributed fashion, each base station lends or borrows time slots from neighboring base stations to adjust its mesh and PMP radio schedules. The distributed schedule adaptation method not only allows individual base stations to accommodate short-term increases in bandwidth demands, it also provides the means for optimizing the mesh and PMP schedules with respect to actual bandwidth demands. Several deployment strategies are considered and an analytical model is developed to identify the achievable increase in overall network throughput using the proposed scheduling approach. Simulations are run in network simulator ns-2 to verify results obtained using the analytical model.
Recommended Citation
Amin, Rahul, "An Integrated Routing and Distributed Scheduling Approach for Hybrid IEEE 802.16E Mesh Networks For Vehicular Broadband Communications" (2008). All Theses. 515.
https://open.clemson.edu/all_theses/515