Chemistry Annual Research Symposium

Document Type

Poster

Publication Date

3-2016

Abstract

The effect of electric potential on the adsorption of collagen type I onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs) is described. Adsorption was investigated as a function of the protein concentration and applied potential. The resulting substrate surfaces were characterized using spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and cyclic voltammetry (CV). While the higher applied potential and protein concentration, the higher the adsorbed amount, the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the substrates under standard cell culture conditions was also affected by the potential applied and when the collagen type I was oxidized (under applied potential > +800 mV), hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion.

Included in

Chemistry Commons

Share

COinS