Document Type
Article
Publication Date
8-2018
Publication Title
Scientific Reports
Issue
8
Publisher
Springer Nature
Abstract
Size based separation and identification of particles in microfluidics through purely hydrodynamic means has gained significant interest due to a number of possible biomedical applications. Curved micro-channels, particularly spiral micro-channels with rectangular cross-section and the dynamics of particles in such channels have been extensively researched to achieve size based separation of particles. In this paper we present evidence that sheds new light on the dynamics of particles in such curved channels; that a unique particle slip velocity is associated with the focusing positions in the cross sections, which leads to a balance of forces. Our experiments therefore imply that the forces acting on the particle lead to convergence to an attractor in both the physical space (the cross section of the channel) and the slip velocity space.
Recommended Citation
Please use the publisher's recommended citation. https://www.nature.com/articles/s41598-018-30171-9#Abs1
Comments
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.