Date of Award

5-2007

Document Type

Thesis

Degree Name

Master of Science (MS)

Legacy Department

Bioengineering

Committee Chair/Advisor

Bateman, Ted

Abstract

Radiation exposure is experienced in both radiotherapy and exploratory space missions. As cancer treatments improve and astronauts aim to explore beyond low earth, radiation's effects on bone must be clearly understood. Nine-week old female C57BL/6 mice were evaluated for cortical bone changes by mechanical testing, micro-computed tomography, quantitative histomorphometry, percent mineralization and micro-hardness indentation. Study one, Multi-Type study, mice received a 2 Gray (Gy) gamma, proton, iron and carbon whole body radiation dose and sacrificed 110 days post-exposure. Study two, High-Dose study, mice received a 7 Gy gamma radiation whole body dose and sacrificed 14 days post-exposure. Neither study revealed significant difference between irradiated nor control groups for any assay. Sublet effect between high Linear Energy Transfer (LET) and low LET radiation was observed. Lack of changes to cortical bone is particularly interesting and may indicate a unique biological microdosimetry microenvironment. This thesis specifically examines radiation effects on cortical bone.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.